
Blue Waters Educational Allocation

Esteban Meneses

University of Pittsburgh

emeneses@pitt.edu

Final Report

Summary

The Computer Science Department of the University of Pittsburgh o↵ered the class CS1645: Introduction
to High Performance Computing Systems during Spring 2014. This course covers the fundamentals of
parallel computing and programming languages for supercomputing. It represents a unique opportunity
for students at the undergraduate level to get first-hand exposure to the main technologies in the high
performance computing (HPC) world and to the most prominent problems faced by the HPC community.
Blue Waters was an ideal resource for this class because it provides in one single system the most advanced
HPC features in terms of architecture, programming languages and HPC libraries. The class included 3
programming assignments that explored OpenMP, OpenAcc, and MPI.

Team Members

Principal Investigator

Name: Esteban Meneses, PhD
Title: Research Assistant Professor
Institution: University of Pittsburgh
Email: emeneses@pitt.edu

Secondary Instructor

Name: Albert DeFusco, PhD
Title: Research Assistant Professor
Institution: University of Pittsburgh
Email: defusco@pitt.edu

Teaching Assistant

Name: Angen Zheng
Title: Research Assistant
Institution: University of Pittsburgh
Email: anz28@pitt.edu

1



Student List

The course was o�cially registered by 33 students, coming mostly from the departments of Computer Science
(CS), and Electrical and Computer Engineering (ECE) at the University of Pittsburgh. Table 1 presents
the list of all the registered students.

Table 1: Registered Student in CS1645: Introduction to HPC Systems

Name Major Level Institution

ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh
CS Undergraduate University of Pittsburgh

CHEM Graduate University of Pittsburgh
ECE Undergraduate University of Pittsburgh

The students were all impressed by the sheer magnitude of a supercomputer like Blue Waters: What
type of applications do they run on that machine? was a common question at the beginning of the semester.
The other fundamental question was How do you write programs for such machine? Do you use sockets?.
The course tried to answer both questions, but we really focused on the latter. Using the online Blue
Waters tutorial, the user help desk (when strictly necessary), and the publicly available documentation on
traditional HPC tools, the students had a smooth experience running on Blue Waters. They were excited
that a single specialized system could provide a wide range of programming tools. But, what was even more
exhilarating was the type of speedup it is possible on Blue Waters. Using accelerators (GPUs in this case)
can really execute certain codes in a snap, was a common opinion in the class. The other source of speedup

2



was the size of jobs that could be submitted to Blue Waters. When a well-written parallel program scale to
hundreds of processors, then it is possible to substantially decrease the execution time.

Learning Outcomes

One particular feature of Blue Waters that was useful for the goals of the course is the hybrid nature of the
machine. Since multicore nodes coexist (at least in one portion of the machine) with accelerators (GPUs),
then it is possible to teach the main programming languages in HPC on a single system. The class covered
OpenMP, OpenAcc, and MPI, all over the same system and using the same software configuration. This
features greatly simplifies the design of the class, because avoids a second learning curve on a di↵erent
supercomputer.

We present a list of the lessons learned throughout the semester-long course:

• The asynchronous execution model of supercomputers requires a change in the mindset of the students.
A job does not necessarily start execution immediately after submitted. It all depends on the scheduling
policy and the current circumstances of the machine at the time of submission. There are two direct
implications of that fact. First, the student has to plan ahead to develop, test, and execute his code.
Second, having interactive allocations simplifies the debugging process.

• Compilers are a wonderful piece of technology, but they can not match the ability of a skilled parallel
programmer (yet?). What directive-based programming languages do is to provide hints for the
compiler on how to parallelize the code. In the case of OpenAcc, the compiler carries out a very intricate
analysis on data dependencies to provide a safe code transformation for parallelization. However, it is
fundamental to have a good understanding of the basic parallel programming principles to come up
with a good parallel program.

• Parallel programming is an art. As much as instructors teach principles, algorithms, and theorems, the
practice makes the master. All parallel programming tools o↵er a rich set of possibilities to implement
di↵erent algorithms to solve the same problem. Even for the same algorithm, there are several variants
and implementation alternatives. Therefore, it is imperative to be exposed to as many examples as
possible to get a good grip on the techniques to optimize a parallel code.

• Scalability comes at a price. The MPI standard was, in general, more involved than OpenMP when the
task at hand was to parallelize a serial algorithm. Often times, it requires to rethink the whole solution
procedure to adjust the algorithm to the workings of message passing. But, persistence pays o↵. In one
of the machine problem homeworks, students were asked to implement a particle-interaction algorithm
using MPI and scale the program to 1,024 cores. Although there is some satisfaction in running such
large jobs, the lesson is usually clear, scaling programs requires e↵ort and the use of appropriate tools.

Highlights

Parallel programming skills are becoming more important in the information technology industry. From
large database applications to sensor network systems, dealing with concurrency is fundamental. This
course provided the students with a tool chest of algorithms, techniques, and tools to face a wide range to
problems. The class emphasized the use of mature programming languages that enjoy wide acceptance in
the HPC community. Those tools allow programmers to exploit massive supercomputing platforms such as
Blue Waters.

3




